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ABSTRACT 
Packet classification is a vital and complicated task as the processing of packets should be done at a specified line 

speed. In order to classify a packet as belonging to a particular flow or set of flows, network nodes must perform a 

search over a set of filters using multiple fields  of  the  packet  as  the  search  key. Packet classification is used by 

networking equipment to sort packets into flows by comparing their headers to a list of rules. A flow is used to 

decide a packet’s priority and the manner in which it is processed. Packet classification is a difficult task due to the 

fact that all packets must be processed at wire speed and rule sets can contain tens of thousands of rules. Also the 

performance of today's packet classification solutions depends on the characteristics of rule sets. The range-based 

packet classification function maps input packets to the highest-priority matching rule in a given rule set specified 

by ranges. In this project, a Merge FSM model based Classifier is proposed to reduce its complexity and time 

consumption. The  contributions  of  this  work  towards  the  area  of  packet  classification  are hardware 

accelerators that allow packet classification to be implemented at core network  line  speeds  when  classifying  

packets  using  rulesets  containing  tens  of thousands  of  rules. A new pre-cutting process has been implemented to 

reduce the memory size to fit in an FPGA. This classifier can classify packets with high speed and with a power 

consumption factor of less than 3W. The proposed algorithm also removes the need for floating point division to be 

performed when classifying a packet, allowing higher clock speeds and thus obtaining higher throughputs. 
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I. INTRODUCTION 

Usage of internet increases day by day because of its ease 

of access through a wide range of devices such as desktops, 

notebooks, tablets, and smartphones. These results in real 

strain on the networking equipment needed to inspect and 

process the resultant traffic. A survey showed   that [1] this 

simple access has allowed Internet penetration to reach 

32.7% of the world’s population by December 2011, with 

the number of Internet users growing by 528% between 

2000 and 2011. This survey also showed that the U.S. had 

over 108 million internet users in 2000and in 2001, it 

becomes in billion ranges. Thus when considering that the 

total amount of energy used in the year 2000 by various 

networking devices in the U.S. equated to the yearly output 

of a typical nuclear reactor unit. This means that the current 

amount of energy used by networking devices worldwide 

could exceed the yearly output of 21 nuclear reactor units. 

Therefore Power consumption should be a key concern 

when designing any new networking equipment for solving 

ever increasing amount of network traffic. Network 

processors are key components used to process packets as 

they pass through a network. Main functions were packet 

fragmentation and reassembly, encryption, forwarding, and 

classification. Reducing the pressure of Network processor 

by addition of extra processing capacity is not easy due to 

factors such as silicon limitations and tight power budgets. 

Ramping up clock speeds to gain extra performance is 

difficult due to physical limitations in the silicon used to 

create these devices, while increasing the number of 

processing cores can cause difficulty when it comes to 

writing the software needed to control the network 

processors. Both these approaches also lead to large 

increases in power consumption due to the extra heat 

generated by increasing the clock speed and the extra 

transistors needed to increase the number of processing 

cores. By using of hardware accelerators dedicated to the 

heaviest tasks of a network processor can help to reduce 

power consumption while increasing processing capacity. 

This is because a hardware accelerator can be designed to 

have fewer transistors than that of the general-purpose 

processors used in multi-core network processors. It can 

also process more data than a general-purpose processor 

while running at slower clock speeds as they are optimized 

to carry out specific tasks. Large savings in power 

consumption can occur due to high reduction in clock 

speed and number of transistors. 

© 2015 IJSRSET | Volume 1 |  Issue 1 |  Print ISSN : 2395-1990 |  Online ISSN : 2394-4099  



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

370 

RELATED STUDY  

 

Large   number of packet classification algorithms has been 

published in the past decade. Most of those algorithms fall 

into two categories: 

 

Decomposition-based algorithms perform   independent 

search on each field and eventually combine the search results 

from all fields. These types of algorithms are desirable for 

hardware implementation due to their parallel search on 

multiple fields. Main disadvantage is that substantial storage 

is usually needed to merge the independent search results in 

order to obtain the final result. Thus decomposition based 

algorithms have poor scalability, and work well only for 

small-scale rule sets. Decision-tree-based algorithms take the 

geometric view of the packet classification problem. Here 

each rule defines a hypercube in a d-dimensional space where 

d is the number of header fields considered for packet 

classification. Each packet defines a point in this d-

dimensional space. The decision tree construction algorithm 

employs several heuristics to cut the space recursively into 

smaller subspaces. Each subspace ends up with fewer rules, 

which helps to a point a low-cost linear search to find the best 

matching rule. 

 

II. METHODS AND MATERIAL 
 

A.  DECISION TREE BASED ALGORITHM 

 

To store ten- thousands of unique rules in the on-chip 

memory of a single FPGA, needs to reduce the memory 

requirement of the decision tree. Here integrate two 

optimization techniques such as rule overlap reduction and 

precise range cuttings into the decision tree construction 

algorithm. Starting from the root node with the full rule set, 

recursively cut the tree nodes until the number of rule in all 

the leaf nodes is smaller than a parameter named list size. 

At each node, we need to figure out the set of fields to cut 

and the number of cuts performed on each field. Therefore 

restrict the maximum number of cuts at each node to be 64. 

In other words, an internal node can have 2, 4, 8, 16, 32 or 

64 children. For the port fields, instead of the number of 

cuts need to determine the precise cut points. We restrict 

the number of cuts on port fields to be at most 2 since more 

bits are needed to store the cut points than to store the 

number of cuts,. For example, we can have 2 cuts on 

source addresses (SA), 4 cuts on destination addresses 

(DA), 2 cuts on source port(SP), and 2 cuts on destination 

port(DP). We do not cut on the protocol field since the first 

4 fields are normally enough to distinguish different rules 

in real life [2]. 

 

Table 1: Example Rule Set. (SA/DA:8-bit; SP/DP: 4-bit; Protocol: 2-

bit) 

Rule SA 
DA SP DP Protocol 

Priorit

y 

Acti

on 

R1 * * 2-9 6-11 Any 1 act0 

R2 1* 0* 3-8 1-4 10 2 act0 

R3 0* 0110

* 
9-12 

10-

13 
11 3 act1 

R4 0* 
11* 11-14 4-8 Any 4 act2 

R5 01

1* 
11* 1-4 9-15 10 5 act2 

R6 01

1* 
11* 1-4 4-15 10 5 act1 

R7 11

0* 
00* 0-15 5-6 11 6 act3 

R8 11

0* 

0110

* 
0-15 5-6 Any 6 act0 

R9 11

1* 

0110

* 
0-15 7-9 11 7 act2 

R10 11

1* 
00* 0-15 4-9 Any 7 act1 

 

Table 1 shows a simplified example, where each rule 

contains match conditions for 5fields: 8-bit source and 

destination addresses, 4-bit source and destination port 

numbers, and a 2-bit protocol value.[ Figure- 1] shows the 

decision tree constructed for the rule set given in Table 1.  

 

 

 
            Figure 1: Building Decision Tree 

 

Various Decision tree-based algorithms were: 

1. Hicuts 

2. Modular Packet Classification 

3. HyperCuts 

B.  PACKET CLASSIFICATION USING 

HIERARCHICAL INTELLIGENT CUTTINGS 

(HICUTS) 

 

The HiCut algorithm [2] works by carefully pre-processing 

the classifier to build a decision tree data structure. Each 

time a packet arrives, the decision tree is traversed to find a 

leaf node, where leaf node stores a small number of rules. 

By linear searching among these rules provides the desired 
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matching. The shape and depth of the decision tree as well 

as the local decisions to be made at each node in the tree 

are chosen when the search tree is built. The following 

[Figure-2] illustrates an example of the decision-tree 

construction for a 2D filter set. There are five rectangles on 

the plane, each of them representing a filter. First step, cut 

is made along the x-axis to generate 4 sub-regions. After 

that, select two of these sub-regions to cut along the y-axis 

and x-axis,. Now each sub-region overlaps less than or 

equal to  2 rectangles. The cutting can be stopped, if it is 

affordable to do a linear search on at most 2 filters. The 

number of decision tree nodes and the number of stored 

filters determine the storage of the algorithm data structure, 

and the depth of the decision tree and the number of filters 

in the leaf nodes determine the worst-case lookup 

throughput. 

 

 

Figure 2: Decision Tree Construction For A 2D Filter Set 

 

C. PACKET CLASSIFICATION USING MODULAR 

PACKET CLASSIFICATION 

 

This  algorithm [3] approaches the problem of packet 

classification very practically. Algorithm proposes which 

combines heuristic tree search with the use of filter buckets. 

It has high performance and economic storage requirement, 

algorithm is unique in the sense that it can adapt to the 

input packet distribution by taking into account the relative 

filter usage. By examining specific bit positions algorithm 

tries to eliminate as many filters as possible. When the set 

of remaining filters is less than some pre-specified 

maximum, instead of eliminating all terminated the first 

step. This set of filters is called as filter bucket. This early 

termination avoids steps of completely differentiate 

between a few ―similar‖ filters. In the second step, the filter 

bucket is processed to find a match. A completely different 

procedure can be used due to the limited size of a filter 

bucket . Therefore this algorithm is a modular composition 

of two procedures: the first to decompose large filter table 

into small filter buckets of a fixed maximum size, and the 

second procedure is to process filter buckets of limited size 

to find a match. 

 

D.PACKET CLASSIFICATION USING HYPERCUTS 

ALGORITHM 

 

HyperCuts [4] is based on a decision tree structure like 

HiCuts. In HiCuts, each node in the decision tree represents 

a hyperplane. But in HyperCut each node in the decision 

tree represents a k--dimensional hypercube. HyperCuts can 

provide an order of magnitude improvement over existing 

classification algorithms using this extra degree of freedom 

and a new set of heuristics to find optimal hypercubes for a 

given amount of storage. HyperCuts uses less memory than 

HiCuts which is optimized for memory. The worst case 

search time of  HyperCuts is 50-500% better than that of 

HiCuts.so HyperCuts is optimized for speed. An example 

of a two dimensional classifier is shown in [Figure – 3] 

with 4 rules: R1….R4. Each rule is represented by a 

rectangle in two dimensional space. The left figure 

represents the action of HiCuts. At each node HiCuts 

builds a decision tree using local optimization decisions to 

choose the next dimension of test in order to find   how 

many cuts to make in the chosen dimension. The leaves of 

the HiCuts tree store a list of rules. These rules may match 

the search path to the leaf. The left part of [Figure - 3] 

shows how the HiCuts algorithm works on the example 

rule set. 

 

 
Figure 3: HiCuts Vs HyperCuts 

 

No matter how many cuts are going to be executed at a 

time, assuming the maximum number of rules held in a leaf 

is 1. HiCuts algorithm requires at least two levels in the 

decision tree. By introducing one more degree of freedom 

HyperCuts algorithm eliminates this limitation in HiCuts. 

Each node in the decision tree represents a decision taken 

on the most representative dimensions, as opposed to using 

only a single dimension. For each of the chosen dimensions, 

the number of cuts is computed based on conditions 
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dependent on the amount of space that is available for the 

search structure. In the example in [Figure – 3] Hyper-

Cuts (on the right) cuts the plane into four squares with one 

direct cut, reducing the height of the decision tree to 1. 

 

MERGE FSM 

 

Merge FSM model based Classifier is proposed to reduce 

its complexity  and  time consumption. The  contributions  

of  this  work  towards  the  area  of  packet  classification  

are hardware accelerators that allow packet classification to 

be implemented at core network  line  speeds  when  

classifying  packets  using  rulesets  containing  tens  of 

thousands  of  rules. A   new   pre-cutting process has been 

implemented to reduce the memory size to fit in an FPGA. 

This classifier can classify packets with high speed and 

with a power consumption factor  of  less  than  3W. The 

proposed algorithm also removes the need for floating 

point division to be performed when classifying a packet, 

allowing higher clock speeds and thus obtaining higher 

throughputs. Computer-aided synthesis of sequential 

circuits is an active area of research as many systems treat 

the control unit of the designed circuit as a finite state 

machine realized with some regular structure. 

 

As its name indicates a Finite state machine (FSM) is a 

circuit with internal states. Finite-state machines provide a 

simple computational model with many applications. 

Recall the definition of a Turing machine: a finite-state 

controller with a movable read/write head on an unbounded 

storage tape. If we restrict the head to move in only one 

direction, we have the general case of a finite-state 

machine. The sequence of symbols being read can be 

thought to constitute the input, while the sequence of 

symbols being written could be thought to constitute the 

output. Finite-state machines, also called finite-state 

automata (singular: automaton) or just finite automata are 

much more restrictive in their capabilities than Turing 

machines. For example, we can show that it is not possible 

for a finite-state machine to determine whether the input 

consists of a prime number of symbols. Much simpler 

languages, such as the sequences of well-balanced 

parenthesis strings, also cannot be recognized by finite-

state machines. Still there are the following applications: 

• Simple forms of pattern matching (precisely the patterns 

definable by "regular expressions‖, as we shall see). 

• Models for sequential logic circuits, of the kind on 

which every present-day computer and many device 

controllers are based. 

• An intimate relationship with directed graphs having 

arcs labeled with symbols from the input alphabet. 

 

Even though each of these models can be depicted in a 

different setting, they have a common mathematical basis. 

Finite-state machines can model a large number of 

problems, among which are electronic design 

automation, communication protocol design, 

language parsing and other engineering applications. 

In biology and artificial intelligence research, state 

machines or hierarchies of state machines have been used 

to describe neurological systems and in linguistics—to 

describe the grammars of natural languages. 

 

 
Figure 4: Finite State Machine as Turing Machine 

 

A. Finite-State Machines as Restricted Turing 

Machines: 

One way to view the finite-state machine model as a more 

restrictive Turing machine is to separate the input and 

output halves of the tapes, as shown below. However, 

mathematically we don't need to rely on the tape metaphor; 

just viewing the input and output as sequences of events 

occurring in time would be adequate. 

 

 
Figure 5: Finite-State Machines as Restricted Turing Machines 

 

B. Modeling the Behavior of Finite-State Machines: 

Concentrating initially on transducers, there are several 

different notations we can use to capture the behavior of 

finite-state machines: 

• As a functional program mapping one list into another. 

• As a restricted imperative program, reading input a 

single character at a time and producing output a single 

character at a time. 

• As a feedback system. 

• Representation of functions as a table 

• Representation of functions by a directed labeled graph 

http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Communication_protocol
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Neurology
http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Languages


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

373 

For concreteness, we shall use the sequence-to-sequence 

model of the machine, although the other models can be 

represented similarly. 

 

 

 

 
Figure 6: Block Diagram For Merge FSM Based Packet 

Classification 

 

 

PACKET CLASSIFICATION ENGINE 

 

Figure below shows the architecture of the packet 

classification engine which is built using two modules. The 

first module is a tree traverser that is used to traverse a 

decision tree using header information from the packet 

being classified. The decision tree is traversed until an 

empty node is reached, meaning that there is no matching 

rule, or a leaf node is reached. A leaf node being reached 

will result in the tree traverser passing the packet header 

and information about the leaf node reached to the second 

module known as the leaf node searcher. The leaf node 

searcher compares the packet header to the rules contained 

in the leaf node until either a matching rule is found or the 

end of the leaf node is reached with no rule matched. The 

leaf node searcher employs two comparator blocks that 

work in parallel. This allows two rules to be searched on 

each memory access, reducing lookup times. Information 

on the decision tree’s root node is stored in registers in the 

tree traverser, making it possible for the tree traverser to 

begin classifying a new packet while the previous packet is 

being compared with rules in a leaf node. This use of 

pipelining allows for a maximum throughput of one packet 

every two clock cycles if the decision tree is made up of 

only a root node and leaf nodes containing no more than 

two rules. 

 

 
Figure 7: Architecture used by the packet classification engines 

 

A. ARCHITECTURE OF THE CLASSIFIER 

 

The classifier has been implemented with multiple packet 

classification engines working in parallel using Stratix III 

and Cyclone III FPGAs. The maximum clock speed that an 

engine can achieve when implemented using an FPGA is 

much slower than the maximum clock speed of an FPGAs 

internal memory. This is due to logic delays in the 

components used by an engine such as the comparator 

blocks. It is, therefore, necessary to use multiple engines 

working in parallel so that the classifier can achieve 

maximum throughput. The use of multiple engines will 

help to ensure that the bandwidth of an FPGAs internal 

memory is better utilized. Another reason for using 

multiple packet classification engines working in parallel is 

that it allows rulesets  that contain many wildcard rules to 

be broken up into groups, with each engine used to search a 

group for a matching rule. Splitting rulesets that contain 

many wildcard rules into groups makes it easier to build 

shallow decision trees that have small leaf nodes, which 

helps to increase throughput and reduce memory usage. 

This is because the rules with wildcard source IP addresses 

can be kept in one group and the rules with wildcard 

destination IP addresses can be kept in another group. The 

group that contains the wildcard destination IP addresses is 

cut by performing the majority of the cuts to the source IP 

address, while the group that contains the wildcard source 

IP addresses is cut by performing the majority of the cuts to 

the destination IP address. The majority of the cuts are 

usually performed to the IP addresses because many of the 

ports can contain the common port range of 1024 to 65 535. 

The matching rule with the highest priority (rule with the 

lowest rule ID) will be chosen in the case where multiple 

engines return a matching rule. The search structure for 

each group can be saved to the same block of memory that 

is shared by the engines. Both the Stratix III and Cyclone 

III implementations of the classifier use eight packet 

classification engines working in parallel. 
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Figure 8: Architecture of the classifier. 

 

Figure above shows the classifier’s architecture, which 

takes advantage of the fact that the internal memory of an 

FPGA is dual port by placing two separate classifiers in 

parallel, sharing the same memory. Each classifier reads 

data from a separate data port and has its own packet buffer 

for storing the headers of incoming packets, four engines 

that work in parallel to maximize the bandwidth usage of a 

data port and a sorter logic block used to make sure that the 

classification results are outputted in the correct order. The 

packet buffer stores the source and destination IP addresses, 

source and destination port numbers, and protocol number 

from the incoming packets. It works on a first come, first 

served basis, with packets being outputted from the buffer 

to the packet classification engines in the same order that 

they were inputted. The buffer also creates a packet ID for 

each header that is passed to the packet classification 

engine along with the packet header. The packet ID is used 

to make sure that the matching rule IDs are outputted by 

the classifier in the same order that the packet headers were 

inputted to the system. The four engines belonging to a 

classifier run at the same clock speed, with the clock used 

by each engine 90° out of phase with the clock used by the 

previous engine. Memory runs at a speed equal to four 

times that of an engine, ensuring a simple memory 

interface, with each engine guaranteed access to memory 

on each of its clock cycles.  

 

The  Stratix III implementation of this classifier has 46 080 

memory words available to save the search structures 

required for classifying packets, while the Cyclone III 

implementation has 12 288 memory words available. The 

memory used is made up of a series of small memory 

blocks which are connected up so that they act as a 

continuous memory space. The memory ports of each 

memory block have their own enable signals. These enable 

signals are used to reduce power consumption by only 

activating the memory blocks that are being read from on a 

given clock cycle. This architecture also allows the 

splitting of a ruleset used to classify packets into groups of 

four or two in order to reduce the memory consumption 

and the worst case number of memory accesses needed to 

classify a packet for rulesets containing a large number of 

wildcard rules. The sorter logic block is used to make sure 

that the matching rule IDs are outputted in the correct order 

and that the rule with the highest priority is selected when 

there are multiple rule matches in the case where rulesets 

are broken up into groups. The sorter logic block accepts 

the Match, NoMatch, RuleI D, and Packet I D signals from 

each of the packet classification engines. It knows that an 

engine has finished classifying a particular packet when 

either the Match or NoMatch signals have been asserted. 

The first job the sorter logic block does is to make sure that 

the rule with the highest priority is selected between 

engines working in parallel to classify the same packet. 

This is done by picking the lowest rule ID between packets 

with the same packet ID. The sorter logic block registers 

the Match, NoMatch, and RuleI D signals for a classified 

packet to a chain of registers andmultiplexers in series. The 

register selected will depend on the packet ID number. The 

Match, NoMatch, and RuleI D signals will be registered to 

the output register if they are next in the sequence of results 

to be outputted, and stored if not. All stored results are 

shifted toward the output register each time a result appears 

that is due to be outputted. This means that the 

classification results are outputted from the classifierin the 

same order that the packets were inputted. 

 

III. RESULTS AND DISCUSSION 
 

The classifier has been tested extensively by measuring its 

logic and memory usage, throughput in terms of Mpps, 

amount of memory it requires when storing the search 

structures needed to classify packets for access control list 

(ACL), firewall (FW), and Internet protocol chain (IPC) 

rulesets  generated using  ClassBench , worst case number 

of memory accesses needed to classify a packet, power 

consumption, and its performance when classifying packets 

using real life OC-48, OC-192, and OC-768 packet traces. 

These results have been benchmarked against state-of-the-

art dedicated FPGA based classifiers. 
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Figure 9: Matched Output 

 

 
Figure 10: Memory Usage 

 

IV. CONCLUSION 
The results show that the classifier performs well in terms 

of memory usage and worst case number of memory 

accesses. Research into the increased throughput of packet 

classification through hardware acceleration with power 

consumption in mind is an increasingly important field of 

research as hardware accelerators have become essential 

when trying to meet core network line speeds. This is 

because line speeds are growing steadily due to advances in 

optical fiber technology and rulesets are expanding due to 

the increasing number of services that need to be 

performed.  
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