
IJSRSET151161 | Received: 13 Feb 2015 | Accepted: 21 Feb 2015 | January-February 2015 [(1)1: 369-375]

Themed Section: Engineering and Technology

369

Merge FSM Based Low Power Packet Classification
Swapna S.R*1 , Dr Sreeja Mole S.S2

Narayanaguru College of Engineering, Tamilnadu, India,

ABSTRACT
Packet classification is a vital and complicated task as the processing of packets should be done at a specified line

speed. In order to classify a packet as belonging to a particular flow or set of flows, network nodes must perform a

search over a set of filters using multiple fields of the packet as the search key. Packet classification is used by

networking equipment to sort packets into flows by comparing their headers to a list of rules. A flow is used to

decide a packet’s priority and the manner in which it is processed. Packet classification is a difficult task due to the

fact that all packets must be processed at wire speed and rule sets can contain tens of thousands of rules. Also the

performance of today's packet classification solutions depends on the characteristics of rule sets. The range-based

packet classification function maps input packets to the highest-priority matching rule in a given rule set specified

by ranges. In this project, a Merge FSM model based Classifier is proposed to reduce its complexity and time

consumption. The contributions of this work towards the area of packet classification are hardware

accelerators that allow packet classification to be implemented at core network line speeds when classifying

packets using rulesets containing tens of thousands of rules. A new pre-cutting process has been implemented to

reduce the memory size to fit in an FPGA. This classifier can classify packets with high speed and with a power

consumption factor of less than 3W. The proposed algorithm also removes the need for floating point division to be

performed when classifying a packet, allowing higher clock speeds and thus obtaining higher throughputs.

Keywords: Packet Classification, Low Power, Accelerator, FSM, Throughput, Speed, Classification Engine

I. INTRODUCTION

Usage of internet increases day by day because of its ease

of access through a wide range of devices such as desktops,

notebooks, tablets, and smartphones. These results in real

strain on the networking equipment needed to inspect and

process the resultant traffic. A survey showed that [1] this

simple access has allowed Internet penetration to reach

32.7% of the world’s population by December 2011, with

the number of Internet users growing by 528% between

2000 and 2011. This survey also showed that the U.S. had

over 108 million internet users in 2000and in 2001, it

becomes in billion ranges. Thus when considering that the

total amount of energy used in the year 2000 by various

networking devices in the U.S. equated to the yearly output

of a typical nuclear reactor unit. This means that the current

amount of energy used by networking devices worldwide

could exceed the yearly output of 21 nuclear reactor units.

Therefore Power consumption should be a key concern

when designing any new networking equipment for solving

ever increasing amount of network traffic. Network

processors are key components used to process packets as

they pass through a network. Main functions were packet

fragmentation and reassembly, encryption, forwarding, and

classification. Reducing the pressure of Network processor

by addition of extra processing capacity is not easy due to

factors such as silicon limitations and tight power budgets.

Ramping up clock speeds to gain extra performance is

difficult due to physical limitations in the silicon used to

create these devices, while increasing the number of

processing cores can cause difficulty when it comes to

writing the software needed to control the network

processors. Both these approaches also lead to large

increases in power consumption due to the extra heat

generated by increasing the clock speed and the extra

transistors needed to increase the number of processing

cores. By using of hardware accelerators dedicated to the

heaviest tasks of a network processor can help to reduce

power consumption while increasing processing capacity.

This is because a hardware accelerator can be designed to

have fewer transistors than that of the general-purpose

processors used in multi-core network processors. It can

also process more data than a general-purpose processor

while running at slower clock speeds as they are optimized

to carry out specific tasks. Large savings in power

consumption can occur due to high reduction in clock

speed and number of transistors.

© 2015 IJSRSET | Volume 1 | Issue 1 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

370

RELATED STUDY

Large number of packet classification algorithms has been

published in the past decade. Most of those algorithms fall

into two categories:

Decomposition-based algorithms perform independent

search on each field and eventually combine the search results

from all fields. These types of algorithms are desirable for

hardware implementation due to their parallel search on

multiple fields. Main disadvantage is that substantial storage

is usually needed to merge the independent search results in

order to obtain the final result. Thus decomposition based

algorithms have poor scalability, and work well only for

small-scale rule sets. Decision-tree-based algorithms take the

geometric view of the packet classification problem. Here

each rule defines a hypercube in a d-dimensional space where

d is the number of header fields considered for packet

classification. Each packet defines a point in this d-

dimensional space. The decision tree construction algorithm

employs several heuristics to cut the space recursively into

smaller subspaces. Each subspace ends up with fewer rules,

which helps to a point a low-cost linear search to find the best

matching rule.

II. METHODS AND MATERIAL

A. DECISION TREE BASED ALGORITHM

To store ten- thousands of unique rules in the on-chip

memory of a single FPGA, needs to reduce the memory

requirement of the decision tree. Here integrate two

optimization techniques such as rule overlap reduction and

precise range cuttings into the decision tree construction

algorithm. Starting from the root node with the full rule set,

recursively cut the tree nodes until the number of rule in all

the leaf nodes is smaller than a parameter named list size.

At each node, we need to figure out the set of fields to cut

and the number of cuts performed on each field. Therefore

restrict the maximum number of cuts at each node to be 64.

In other words, an internal node can have 2, 4, 8, 16, 32 or

64 children. For the port fields, instead of the number of

cuts need to determine the precise cut points. We restrict

the number of cuts on port fields to be at most 2 since more

bits are needed to store the cut points than to store the

number of cuts,. For example, we can have 2 cuts on

source addresses (SA), 4 cuts on destination addresses

(DA), 2 cuts on source port(SP), and 2 cuts on destination

port(DP). We do not cut on the protocol field since the first

4 fields are normally enough to distinguish different rules

in real life [2].

Table 1: Example Rule Set. (SA/DA:8-bit; SP/DP: 4-bit; Protocol: 2-

bit)

Rule SA
DA SP DP Protocol

Priorit

y

Acti

on

R1 * * 2-9 6-11 Any 1 act0

R2 1* 0* 3-8 1-4 10 2 act0

R3 0* 0110

*
9-12

10-

13
11 3 act1

R4 0*
11* 11-14 4-8 Any 4 act2

R5 01

1*
11* 1-4 9-15 10 5 act2

R6 01

1*
11* 1-4 4-15 10 5 act1

R7 11

0*
00* 0-15 5-6 11 6 act3

R8 11

0*

0110

*
0-15 5-6 Any 6 act0

R9 11

1*

0110

*
0-15 7-9 11 7 act2

R10 11

1*
00* 0-15 4-9 Any 7 act1

Table 1 shows a simplified example, where each rule

contains match conditions for 5fields: 8-bit source and

destination addresses, 4-bit source and destination port

numbers, and a 2-bit protocol value.[Figure- 1] shows the

decision tree constructed for the rule set given in Table 1.

 Figure 1: Building Decision Tree

Various Decision tree-based algorithms were:

1. Hicuts

2. Modular Packet Classification

3. HyperCuts

B. PACKET CLASSIFICATION USING

HIERARCHICAL INTELLIGENT CUTTINGS

(HICUTS)

The HiCut algorithm [2] works by carefully pre-processing

the classifier to build a decision tree data structure. Each

time a packet arrives, the decision tree is traversed to find a

leaf node, where leaf node stores a small number of rules.

By linear searching among these rules provides the desired

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

371

matching. The shape and depth of the decision tree as well

as the local decisions to be made at each node in the tree

are chosen when the search tree is built. The following

[Figure-2] illustrates an example of the decision-tree

construction for a 2D filter set. There are five rectangles on

the plane, each of them representing a filter. First step, cut

is made along the x-axis to generate 4 sub-regions. After

that, select two of these sub-regions to cut along the y-axis

and x-axis,. Now each sub-region overlaps less than or

equal to 2 rectangles. The cutting can be stopped, if it is

affordable to do a linear search on at most 2 filters. The

number of decision tree nodes and the number of stored

filters determine the storage of the algorithm data structure,

and the depth of the decision tree and the number of filters

in the leaf nodes determine the worst-case lookup

throughput.

Figure 2: Decision Tree Construction For A 2D Filter Set

C. PACKET CLASSIFICATION USING MODULAR

PACKET CLASSIFICATION

This algorithm [3] approaches the problem of packet

classification very practically. Algorithm proposes which

combines heuristic tree search with the use of filter buckets.

It has high performance and economic storage requirement,

algorithm is unique in the sense that it can adapt to the

input packet distribution by taking into account the relative

filter usage. By examining specific bit positions algorithm

tries to eliminate as many filters as possible. When the set

of remaining filters is less than some pre-specified

maximum, instead of eliminating all terminated the first

step. This set of filters is called as filter bucket. This early

termination avoids steps of completely differentiate

between a few ―similar‖ filters. In the second step, the filter

bucket is processed to find a match. A completely different

procedure can be used due to the limited size of a filter

bucket . Therefore this algorithm is a modular composition

of two procedures: the first to decompose large filter table

into small filter buckets of a fixed maximum size, and the

second procedure is to process filter buckets of limited size

to find a match.

D.PACKET CLASSIFICATION USING HYPERCUTS

ALGORITHM

HyperCuts [4] is based on a decision tree structure like

HiCuts. In HiCuts, each node in the decision tree represents

a hyperplane. But in HyperCut each node in the decision

tree represents a k--dimensional hypercube. HyperCuts can

provide an order of magnitude improvement over existing

classification algorithms using this extra degree of freedom

and a new set of heuristics to find optimal hypercubes for a

given amount of storage. HyperCuts uses less memory than

HiCuts which is optimized for memory. The worst case

search time of HyperCuts is 50-500% better than that of

HiCuts.so HyperCuts is optimized for speed. An example

of a two dimensional classifier is shown in [Figure – 3]

with 4 rules: R1….R4. Each rule is represented by a

rectangle in two dimensional space. The left figure

represents the action of HiCuts. At each node HiCuts

builds a decision tree using local optimization decisions to

choose the next dimension of test in order to find how

many cuts to make in the chosen dimension. The leaves of

the HiCuts tree store a list of rules. These rules may match

the search path to the leaf. The left part of [Figure - 3]

shows how the HiCuts algorithm works on the example

rule set.

Figure 3: HiCuts Vs HyperCuts

No matter how many cuts are going to be executed at a

time, assuming the maximum number of rules held in a leaf

is 1. HiCuts algorithm requires at least two levels in the

decision tree. By introducing one more degree of freedom

HyperCuts algorithm eliminates this limitation in HiCuts.

Each node in the decision tree represents a decision taken

on the most representative dimensions, as opposed to using

only a single dimension. For each of the chosen dimensions,

the number of cuts is computed based on conditions

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

372

dependent on the amount of space that is available for the

search structure. In the example in [Figure – 3] Hyper-

Cuts (on the right) cuts the plane into four squares with one

direct cut, reducing the height of the decision tree to 1.

MERGE FSM

Merge FSM model based Classifier is proposed to reduce

its complexity and time consumption. The contributions

of this work towards the area of packet classification

are hardware accelerators that allow packet classification to

be implemented at core network line speeds when

classifying packets using rulesets containing tens of

thousands of rules. A new pre-cutting process has been

implemented to reduce the memory size to fit in an FPGA.

This classifier can classify packets with high speed and

with a power consumption factor of less than 3W. The

proposed algorithm also removes the need for floating

point division to be performed when classifying a packet,

allowing higher clock speeds and thus obtaining higher

throughputs. Computer-aided synthesis of sequential

circuits is an active area of research as many systems treat

the control unit of the designed circuit as a finite state

machine realized with some regular structure.

As its name indicates a Finite state machine (FSM) is a

circuit with internal states. Finite-state machines provide a

simple computational model with many applications.

Recall the definition of a Turing machine: a finite-state

controller with a movable read/write head on an unbounded

storage tape. If we restrict the head to move in only one

direction, we have the general case of a finite-state

machine. The sequence of symbols being read can be

thought to constitute the input, while the sequence of

symbols being written could be thought to constitute the

output. Finite-state machines, also called finite-state

automata (singular: automaton) or just finite automata are

much more restrictive in their capabilities than Turing

machines. For example, we can show that it is not possible

for a finite-state machine to determine whether the input

consists of a prime number of symbols. Much simpler

languages, such as the sequences of well-balanced

parenthesis strings, also cannot be recognized by finite-

state machines. Still there are the following applications:

• Simple forms of pattern matching (precisely the patterns

definable by "regular expressions‖, as we shall see).

• Models for sequential logic circuits, of the kind on

which every present-day computer and many device

controllers are based.

• An intimate relationship with directed graphs having

arcs labeled with symbols from the input alphabet.

Even though each of these models can be depicted in a

different setting, they have a common mathematical basis.

Finite-state machines can model a large number of

problems, among which are electronic design

automation, communication protocol design,

language parsing and other engineering applications.

In biology and artificial intelligence research, state

machines or hierarchies of state machines have been used

to describe neurological systems and in linguistics—to

describe the grammars of natural languages.

Figure 4: Finite State Machine as Turing Machine

A. Finite-State Machines as Restricted Turing

Machines:

One way to view the finite-state machine model as a more

restrictive Turing machine is to separate the input and

output halves of the tapes, as shown below. However,

mathematically we don't need to rely on the tape metaphor;

just viewing the input and output as sequences of events

occurring in time would be adequate.

Figure 5: Finite-State Machines as Restricted Turing Machines

B. Modeling the Behavior of Finite-State Machines:

Concentrating initially on transducers, there are several

different notations we can use to capture the behavior of

finite-state machines:

• As a functional program mapping one list into another.

• As a restricted imperative program, reading input a

single character at a time and producing output a single

character at a time.

• As a feedback system.

• Representation of functions as a table

• Representation of functions by a directed labeled graph

http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Communication_protocol
http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Neurology
http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Languages

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

373

For concreteness, we shall use the sequence-to-sequence

model of the machine, although the other models can be

represented similarly.

Figure 6: Block Diagram For Merge FSM Based Packet

Classification

PACKET CLASSIFICATION ENGINE

Figure below shows the architecture of the packet

classification engine which is built using two modules. The

first module is a tree traverser that is used to traverse a

decision tree using header information from the packet

being classified. The decision tree is traversed until an

empty node is reached, meaning that there is no matching

rule, or a leaf node is reached. A leaf node being reached

will result in the tree traverser passing the packet header

and information about the leaf node reached to the second

module known as the leaf node searcher. The leaf node

searcher compares the packet header to the rules contained

in the leaf node until either a matching rule is found or the

end of the leaf node is reached with no rule matched. The

leaf node searcher employs two comparator blocks that

work in parallel. This allows two rules to be searched on

each memory access, reducing lookup times. Information

on the decision tree’s root node is stored in registers in the

tree traverser, making it possible for the tree traverser to

begin classifying a new packet while the previous packet is

being compared with rules in a leaf node. This use of

pipelining allows for a maximum throughput of one packet

every two clock cycles if the decision tree is made up of

only a root node and leaf nodes containing no more than

two rules.

Figure 7: Architecture used by the packet classification engines

A. ARCHITECTURE OF THE CLASSIFIER

The classifier has been implemented with multiple packet

classification engines working in parallel using Stratix III

and Cyclone III FPGAs. The maximum clock speed that an

engine can achieve when implemented using an FPGA is

much slower than the maximum clock speed of an FPGAs

internal memory. This is due to logic delays in the

components used by an engine such as the comparator

blocks. It is, therefore, necessary to use multiple engines

working in parallel so that the classifier can achieve

maximum throughput. The use of multiple engines will

help to ensure that the bandwidth of an FPGAs internal

memory is better utilized. Another reason for using

multiple packet classification engines working in parallel is

that it allows rulesets that contain many wildcard rules to

be broken up into groups, with each engine used to search a

group for a matching rule. Splitting rulesets that contain

many wildcard rules into groups makes it easier to build

shallow decision trees that have small leaf nodes, which

helps to increase throughput and reduce memory usage.

This is because the rules with wildcard source IP addresses

can be kept in one group and the rules with wildcard

destination IP addresses can be kept in another group. The

group that contains the wildcard destination IP addresses is

cut by performing the majority of the cuts to the source IP

address, while the group that contains the wildcard source

IP addresses is cut by performing the majority of the cuts to

the destination IP address. The majority of the cuts are

usually performed to the IP addresses because many of the

ports can contain the common port range of 1024 to 65 535.

The matching rule with the highest priority (rule with the

lowest rule ID) will be chosen in the case where multiple

engines return a matching rule. The search structure for

each group can be saved to the same block of memory that

is shared by the engines. Both the Stratix III and Cyclone

III implementations of the classifier use eight packet

classification engines working in parallel.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

374

Figure 8: Architecture of the classifier.

Figure above shows the classifier’s architecture, which

takes advantage of the fact that the internal memory of an

FPGA is dual port by placing two separate classifiers in

parallel, sharing the same memory. Each classifier reads

data from a separate data port and has its own packet buffer

for storing the headers of incoming packets, four engines

that work in parallel to maximize the bandwidth usage of a

data port and a sorter logic block used to make sure that the

classification results are outputted in the correct order. The

packet buffer stores the source and destination IP addresses,

source and destination port numbers, and protocol number

from the incoming packets. It works on a first come, first

served basis, with packets being outputted from the buffer

to the packet classification engines in the same order that

they were inputted. The buffer also creates a packet ID for

each header that is passed to the packet classification

engine along with the packet header. The packet ID is used

to make sure that the matching rule IDs are outputted by

the classifier in the same order that the packet headers were

inputted to the system. The four engines belonging to a

classifier run at the same clock speed, with the clock used

by each engine 90° out of phase with the clock used by the

previous engine. Memory runs at a speed equal to four

times that of an engine, ensuring a simple memory

interface, with each engine guaranteed access to memory

on each of its clock cycles.

The Stratix III implementation of this classifier has 46 080

memory words available to save the search structures

required for classifying packets, while the Cyclone III

implementation has 12 288 memory words available. The

memory used is made up of a series of small memory

blocks which are connected up so that they act as a

continuous memory space. The memory ports of each

memory block have their own enable signals. These enable

signals are used to reduce power consumption by only

activating the memory blocks that are being read from on a

given clock cycle. This architecture also allows the

splitting of a ruleset used to classify packets into groups of

four or two in order to reduce the memory consumption

and the worst case number of memory accesses needed to

classify a packet for rulesets containing a large number of

wildcard rules. The sorter logic block is used to make sure

that the matching rule IDs are outputted in the correct order

and that the rule with the highest priority is selected when

there are multiple rule matches in the case where rulesets

are broken up into groups. The sorter logic block accepts

the Match, NoMatch, RuleI D, and Packet I D signals from

each of the packet classification engines. It knows that an

engine has finished classifying a particular packet when

either the Match or NoMatch signals have been asserted.

The first job the sorter logic block does is to make sure that

the rule with the highest priority is selected between

engines working in parallel to classify the same packet.

This is done by picking the lowest rule ID between packets

with the same packet ID. The sorter logic block registers

the Match, NoMatch, and RuleI D signals for a classified

packet to a chain of registers andmultiplexers in series. The

register selected will depend on the packet ID number. The

Match, NoMatch, and RuleI D signals will be registered to

the output register if they are next in the sequence of results

to be outputted, and stored if not. All stored results are

shifted toward the output register each time a result appears

that is due to be outputted. This means that the

classification results are outputted from the classifierin the

same order that the packets were inputted.

III. RESULTS AND DISCUSSION

The classifier has been tested extensively by measuring its

logic and memory usage, throughput in terms of Mpps,

amount of memory it requires when storing the search

structures needed to classify packets for access control list

(ACL), firewall (FW), and Internet protocol chain (IPC)

rulesets generated using ClassBench , worst case number

of memory accesses needed to classify a packet, power

consumption, and its performance when classifying packets

using real life OC-48, OC-192, and OC-768 packet traces.

These results have been benchmarked against state-of-the-

art dedicated FPGA based classifiers.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

375

Figure 9: Matched Output

Figure 10: Memory Usage

IV. CONCLUSION
The results show that the classifier performs well in terms

of memory usage and worst case number of memory

accesses. Research into the increased throughput of packet

classification through hardware acceleration with power

consumption in mind is an increasingly important field of

research as hardware accelerators have become essential

when trying to meet core network line speeds. This is

because line speeds are growing steadily due to advances in

optical fiber technology and rulesets are expanding due to

the increasing number of services that need to be

performed.

V. REFERENCE

[1]. Usage and population statistics (2012,jun.)

[online].Available:http://www.internetworldstats.com/st

ats.htm

[2]. P. Gupta and N. McKeown, ―Packet classification using

hierarchical intelligent cuttings,‖ IEEE Micro, Feb.

2000,vol. 20, no. 1, pp. 34–4.

[3]. T. Woo, ―A modular approach to packet classification:

Algorithms and results,‖ in Proc. IEEE Int. Conf.

Comput. Commun., Mar. 2000, pp. 1213–1222.

[4]. S. Singh, F. Baboescu, G. Varghese, and J. Wang,

―Packet classification usingmultidimensional cutting,‖ in

Proc. ACM Special Interest Group Data Commun. Conf.,

Aug.2003, pp. 213–224.

[5]. P. Gupta and N. McKeown, ―Packet classification on

multiple fields,‖ in Proc. ACM Special Interest Group

Data Commun. Conf., Sep. 1999, pp. 147–160.

[6]. T. V. Lakshman and D. Stiliadis, ―High-speed policy

based packet forwarding using efficient multi-

dimensional range matching,‖ in Proc. ACM Special

Interest Group Data Commun.Conf., Sep. 1998, pp. 203–

214.

[7]. V. Srinivasan, S. Suri, and G. Varghese, ―Packet

classification using tuple space search, ‖ in Proc. ACM

Special Interest Group Data Commun.Conf., Sep. 1999,

pp. 135–146.

